This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SYNTHESIS OF S-(ARYL/HETERARYLOXAZOL-2-YL) [(ARYL / HETERARYLOXAZOL-2-YL)THIO]-ETHANETHIOATES AS POTENTIAL ANTIMICROBIAL AGENTS

B. Rajeshwar Rao^a; G. V. P. Chandra Mouli^a; Y. D. Reddy^a; S. Girisham^b; S. M. Reddy^b
^a Department of Chemistry, Regional Engineering College, India ^b Department of Botany, Kakatiya University, Warangal, India

To cite this Article Rao, B. Rajeshwar , Mouli, G. V. P. Chandra , Reddy, Y. D. , Girisham, S. and Reddy, S. M.(1985) 'SYNTHESIS OF S-(ARYL/HETERARYLOXAZOL-2-YL) [(ARYL / HETERARYLOXAZOL-2-YL)THIO]-ETHANETHIOATES AS POTENTIAL ANTIMICROBIAL AGENTS', Phosphorus, Sulfur, and Silicon and the Related Elements, 21: 3, 327 - 333

To link to this Article: DOI: 10.1080/03086648508077676
URL: http://dx.doi.org/10.1080/03086648508077676

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF S-(ARYL / HETERARYLOXAZOL-2-YL)[(ARYL / HETERARYLOXAZOL-2-YL)THIO]-ETHANETHIOATES AS POTENTIAL ANTIMICROBIAL AGENTS

B. RAJESHWAR RAO, G. V. P. CHANDRA MOULI and Y. D. REDDY*

Department of Chemistry, Regional Engineering College, Warangal-506 004, India

S. GIRISHAM and S. M. REDDY

Department of Botany, Kakatiya University, Warangal, India

(Received July 19, 1984)

The reaction of 2-mercaptoaryl/heteraryloxazoles with chloroacetylchloride in equimolar ratio afforded S-(aryl/heteraryloxazol-2-yl)chloroethanethioates (Ia–VIa) and also 1,2-bis-[(aryl/heteraryloxazol-2-yl)thio]-1-oxoethanes (Ib, IIc, IIIe, IVf, Vg and VIj) in 2:1 molar ratio in the basic medium. Treatment of (Ia–VIa) with different 2-mercaptoaryl/heteraryloxazoles in the presence of triethylamine yielded the corresponding S-(aryl/heteraryloxazol-2-yl) [(aryl/heteraryloxazol-2-yl)thio]ethanethioates (Ib–j–VIb–j). All the compounds have been characterized by elemental analyses, and spectral (IR, and PMR and Mass) data. The antimicrobial activity of some of the compounds has also been evaluated.

INTRODUCTION

The contact insecticidal activity of alkyl thiocyanates,¹ and significant biological properties of 2-alkylthiobenzthiazoles and 2-alkylthiobenzoxazoles² are associated with the sequence of atoms —S—C—N—. Motivated by these facts, we wish to present here the preparation of some hitherto unreported (S-(aryl/heteraryloxazol-2-yl)-[(aryl/heteraryloxazol-2-yl)thio]ethanethioates (Ib-j-VIb-j) with a view to evaluate their antimicrobial activity; as an extension of previous studies.^{3,4}

RESULTS AND DISCUSSION

S-(Aryl/heteraryloxazol-2-yl)chloroethanethioates (Ia-VIa) were prepared by the interaction of appropriate 2-mercaptoaryl/heteraryloxazoles with chloroacetylchloride in equimolar ratio in the presence of methanolic KOH.

The structures of Ia-VIa were established by elemental analysis. The IR spectra

exhibited the characteristic absorption bands⁵ at 1680 ± 30 cm⁻¹ for S— C— in the

^{*}Author to whom all correspondence should be addressed.

thiolesters. The PMR spectrum of IIIa in CDCl₃ (chemical shifts in δ -ppm down field from TMS as an internal reference) displayed a three protons singlet at δ 2.4 assignable to the 6-methyl group and a two protons singlet at δ 2.6 due to the

CHART_1

methylene of the — $\overset{\circ}{C}$ — CH_2 — group. Because of the lactone carbonyl cone effect, the C_7 proton appeared as a singlet at δ 6.3. The two aromatic protons at C_4 and C_5 appeared at δ 7.4–7.6 as AB quartet (J=10 Hz), which confirms the angular

TABLE I
Characterisation data of the compounds (I-VI)a-j

Compound+)/ P	V:-14	Mol.	Found* (%) (Calc)		
	M.P. °C	Yield (%)	formula.	N	s	
Ia	160	50	C ₉ H ₆ NO ₂ SCl	6.18 (6.15)	14.08 (14.06)	
Ib	195	42	$C_{16}H_{10}N_2O_3S_2$	8.2 (8.19)	18.7	
Ic	240	36	$C_{20}H_{12}N_2O_3S_2$	7.13 (7.14)	16.3 (16.32)	
Id	292	42	$C_{21}H_{15}N_3O_3S_2$	9.96 (9.97)	15.21 (15.20)	
Ie	270	35	$C_{20}H_{12}N_2O_5S_2$	6.61 (6.6)	15.07 (15.09)	
If	256	38	$C_{21}H_{14}N_2O_5S_2$	6.38 (6.39)	14.6 (14.61)	
Ig	265	36	$C_{26}H_{16}N_2O_5S_2$	5.58 (5.6)	12.7 (12.8)	
Ih	283	32	$C_{20}H_{12}N_2O_5S_2$	(6.59 (6.6)	15.07 (15.09)	
Ii	271	32	$C_{20}H_{12}N_2O_5S_2$	6.59	15.08 (15.09)	
Ij	250	25	$C_{21}H_{14}N_2O_5S_2$	6.4 (6.39)	14.6 (14.61)	
IIa	260	45	$C_{13}H_8NO_2SCI$	5.08 (5.04)	11.55 (11.53)	
IIb	229	32	$C_{20}H_{12}N_2O_3S_2\\$	7.13 (7.14)	16.3 (16.32)	
Hc	234	43	$C_{24}H_{14}N_2O_3S_2\\$	6.32 (6.33)	14.46 (14.48)	
IId	242	38	$C_{25}H_{17}N_3O_3S_2$	8.91 (8.92)	13.6 (13.59)	
He	215	36	$C_{24}H_{14}N_2O_5S_2$	5.88 (5.9)	13.58 (13.5)	
IIf	215	36	$C_{25}H_{16}N_2O_5S_2\\$	5.70 (5.73)	13.12 (13.11)	
IIg	254	35	$C_{30}H_{18}N_2O_5S_2$	5.08 (5.1)	11.62 (11.63)	
IIh	262	36	$C_{24}H_{14}N_2O_5S_2$	5.88 (5.9)	13.51 (13.5)	
IIi	180	38	$C_{24}H_{14}N_2O_5S_2$	5.91 (5.9)	13.46 (13.5)	
IIj	160	38	$C_{25}H_{16}N_2O_5S_2$	5.72 (5.74)	13.12 (13.11)	
IIIa	286	50	$C_{13}H_8NO_4SCl$	4.54 (4.52)	10.33 (10.34)	
IIIb	272	30	$C_{20}H_{12}N_2O_5S_2$	6.58	15.07 (15.09)	
IIIc	220	35	$C_{24}H_{14}N_2O_5S_2$	5.91 (5.9)	13.52 (13.5)	
IIId	295	45	$C_{25}H_{17}N_3O_5S_2$	8.32 (8.35)	12.74 (12.72)	
IIIe	280	60	$C_{24}H_{14}N_2O_7S_2$	5.52 (5.53)	12.66 (12.64)	
IIIf	250	55	$C_{25}H_{16}N_2O_7S_2\\$	5.4 (5.38)	12.3 (12.31)	
IIIg	313	48	$C_{30}H_{18}N_2O_7S_2\\$	4.83	11.1 (10.99)	
IIIh	285	48	$C_{24}H_{14}N_2O_7S_2$	5.54 (5.53)	12.62 (12.64)	
IIIi	258	25	$C_{24}H_{14}N_2O_7S_2\\$	5.51 (5.53)	12.63 (12.64)	
IIIj	265	23	$C_{25}H_{16}N_2O_7S_2$	5.4 (5.38)	12.32 (12.3)	
IVa	280	60	C ₁₄ H ₁₀ NO ₄ SCl	4.31	9.88	

TABLE I (Continued)

	M.P.	Yield	Mol.	Found*	(%) (Calc
Compound+	°C	(%)	formula.	N	S
IVb	310	40	$C_{21}H_{14}N_2O_5S_2$	6.38	14.63
				(6.39)	(14.61)
IVc	240	48	$C_{25}H_{16}N_2O_5S_2$	5.72	13.14
IVd	320	35	$C_{26}H_{19}N_3O_5S_2$	(5.73) 8.11	(13.11) 12.4
174	320	35	C ₂₆ H ₁₉ N ₃ O ₅ S ₂	(8.12)	(12.38)
IVe	272	37	$C_{25}H_{16}N_2O_7S_2$	5.4	12.32
				(5.38)	(12.3)
IVf	325	50	$C_{26}H_{18}N_2O_7S_2$	5.22	11.96
TV-	200	26	CHNOC	(5.24)	(11.98)
IVg	280	35	$C_{31}H_{20}N_2O_7S_2$	4.67 (4.69)	10.74 (10.73)
IVh	295	36	$C_{25}H_{16}N_2O_7S_2$	5.39	12.32
			0251161120702	(5.38)	(12.3)
IV i	255	38	$C_{25}H_{16}N_2O_7S_2$	5.36	12.31
				(5.38)	(12.3)
IVj	245	36	$C_{26}H_{18}N_2O_7S_2$	5.23	11.97
Va	202	(0	C II NO CCI	(5.24)	(11.98)
va	282	60	$C_{19}H_{12}NO_4SCI$	3.62 (3.63)	8.29 (8.3)
Vb	286	38	$C_{26}H_{16}N_2O_5S_2$	5.62	12.78
*0	200	50	$C_{26}\Pi_{16}\Pi_{2}C_{5}S_{2}$	(5.6)	(12.8)
Vc	294	38	$C_{30}H_{18}N_2O_5S_2$	5.12	11.61
			30 18 2 3 2	(5.1)	(11.63)
Vd	311	38	$C_{31}H_{21}N_3O_5S_2$	7.27	11.08
	200	20		(7.25)	(11.05)
Ve	288	38	$C_{30}H_{18}N_2O_7S_2$	4.8	10.93
Vf	274	42	$C_{31}H_{20}N_2O_7S_2$	(4.81) 4.7	(10.99) 10.72
**	214	72	C311120112O732	(4.69)	(10.74)
Vg	298	45	$C_{36}H_{22}N_2O_7S_2$	4.24	9.72
				(4.25)	(9.73)
Vh	293	40	$C_{30}H_{18}N_2O_7S_2$	4.83	10.92
Vi	267	25	$C_{30}H_{18}N_2O_7S_2$	(4.81) 4.8	(10.99) 11.0
V.	207	23	C ₃₀ 11 ₁₈ 14 ₂ O ₇ 3 ₂	(4.81)	(10.99)
Vj	254	27	$C_{31}H_{20}N_2O_7S_2$	4.7	10.71
-				(4.69)	(10.74)
VIa	285	60	C ₁₄ H ₁₀ NO ₄ SCI	4.28	9.84
VIb	220	25	CHNOC	(4.3)	(9.83)
VID	230	35	$C_{21}H_{14}N_2O_5S_2$	6.4 (6.39)	14.6 (14.61)
VIc	210	40	$C_{25}H_{16}N_2O_5S_2$	5.73	13.09
			23 16 2 3-2	(5.74)	(13.11)
VId	270	43	$C_{26}H_{19}N_3O_5S_2$	8.11	12.39
***	274	50	0 11 11 0 0	(8.12)	(12.38)
VIe	276	50	$C_{25}H_{16}N_2O_7S_2$	5.4 (5.38)	12.32
VIf	238	38	$C_{26}H_{18}N_2O_7S_2$	5.23	(12.3) 11.97
• ••		55	~26**18**2 ~7.52	(5.24)	(11.98)
VIg	247	32	$C_{31}H_{20}N_2O_7S_2$	4.7	10.72
VIh				(4.69)	(10.73)
	280	32	$C_{25}H_{16}N_2O_7S_2$	5.37	12.28
VIi	262	25	CHNOS	(5.38)	(12.3)
V 11	262	23	$C_{25}H_{16}N_2O_7S_2$	5.36 (5.38)	12.31 (12.3)
VIj	278	44	$C_{26}H_{18}N_2O_7S_2$	5.23	12.00
· 4)	-	-	20 10 2 1-2	(5.24)	(11.98)

^{*} Solvents used for crystallisation were: Dioxane for IIIb-j, Vb-j; Ethanol for Ia-VIa, IVb-j; Methanol for Ib-j, IIb-j, VIb-j.

*All the compounds gave satisfactory C and H analyses.

structure of the compound. The mass spectrum of IIIa exhibited peaks m/z 309 (M⁺; 3%), 233 (M⁺—O=C=CHCl, 100), 207 (3.1), 206 (6.9), 205 (48), 204 (20.5), 172 (2.5), 151 (23), 106 (2.4), 91 (7), 77 (2), and 64 (7.1).

The reaction of Ia–VIa with various 2-mercaptoaryl/heteraryloxazoles in the presence of triethylamine resulted in the formation of the corresponding S-(aryl/heteraryloxazol-2-yl)[(aryl/heteraryloxazol-2-yl)thio]ethanethioates (Ib–j–VIb–j) Table I. But when 2-mercaptoaryl/heteraryloxazoles were treated with chloroacetyl chloride in 2:1 molar ratio in the presence of pyridine medium, the condensation took place simultaneously at both the ends of chloroacetylchloride in a single step giving rise to the respective 1,2-bis[(aryl/heteraryloxazol-2-yl)thio]-1-oxo-ethanes (Ib, IIc, IIIe, IVf, Vg and VIj); which were found to be identical (m.p., m.m.p., IR, CO-T LC) with those obtained by the two step procedure (vide supra).

IR spectra of Ib-j-VIb-j displayed characteristic absorption bands at 1320 ± 30 cm⁻¹ for S-CH₂⁶ and moreover, additional bands at 1560 ± 10 , 1060 ± 10 and 1360 ± 10 cm⁻¹ have also been found to be common, attributable to respective C=N, -C-O-C- and -C-N= of the oxazole ring system. PMR spectrum

of Ib in CDCl₃ revealed a two protons singlet at δ 2.5 due to the — C—CH₂—group and eight aromatic protons appeared as a complex multiplet at δ 7.2-7.6.

PMR (CDCl₃) data obtained from compound IIIb [δ 2.5 (2H, s, - C—CH₂), δ 2.8 (3 H, s, —CH₃), δ 6.4 (1 H, s, C₇—H), δ 7.2–7.6 (6 H, m, Ar—H)] in agreement

TABLE II

Antimicrobial activity of the compounds (Ij, IId, IVc, e and g)

	Antibacterial activity*						Antifungal activity**		
Compound	Conc. µg/ml.	E.Coli	S.lutea	B. mega- terium	P.vulgaris	P. fluore- scence	Conc. μg/ml.	C. Lunata	D. halodis
Ij	250			0.5			360	0	0
	500	0.8	0.7	1.0		_	600	14.77	22.84
	800	1.3	1.3	2.0	_	0.5	840	23.08	30.32
IId	250	_		0.5		_	360	0	31.52
	500	0.5		1.0		0.5	600	86.00	100.00
	800	1.0	0.5	2.5	0.5	1.0	840	100.00	100.00
IVc	250	_		_		_	360	14.60	19.35
	500	0.5	0.5	0.8			600	37.31	40.47
	800	1.0	1.5	2.0	0.5	0.5	840	100.00	100.00
IVe	250	0.5	_	_		_	360	7.16	16.07
	500	1.0	2.0	1.0		-	600	14.77	25.00
	800	3.0	3.5	4.5		0.5	840	15.69	48.85
IVg	250		_	_		_	360	0	22.42
	500	0.5	1.0	_	0.5	_	600	6.43	27.27
	800	1.0	1.5	0.5	1.0	0.5	840	14.19	66.85

^{*}Inhibition zone (in mm.)

^{**}Percentage inhibition.

with the assigned structure. The mass spectra of Ib, IIIb and Vb exhibited molecular ion peaks at m/z 342, 424 and 500 respectively. These are also consistent with the observed fragmentation patterns.⁸

Antimicrobial activity

Compounds were tested against bacteria such as Escheritia Coli, Sarcina lutea, Bacillus megaterium, Proteus vulgaris and Pseudomonas fluorescence by using filter paper disc technique; and against fungi, such as Curvularia lunata and Drechslera halodis. Compounds Ij, IId, IVc, IVe and IVg showed very strong inhibition against E.Coli, S.lutea and B.megaterium, whereas IId, IVc and IVg showed moderate inhibition against P.vulgaris and P.fluorescence at the dose level of 800 μ g/ml. Compounds IId and IVc showed 100% inhibition, while the compounds Ij, IVe and IVg showed 15–67% inhibition of spore germination in C.lunata and D. halodis at a concentration of 840 μ g/ml (Table II)

EXPERIMENTAL

Melting points were taken in open glass capillaries and are uncorrected. Purity of all the compounds was routinely checked by TLC on silica gel G plates using iodine vapours as spray agent. IR spectra in KBr (ν_{max} in cm⁻¹) were recorded on Perkin-Elmer 337 grating instrument. PMR spectra in CDCl₃ were taken on Perkin-Elmer R-32 instrument at 90 MHz using TMS as an internal reference (chemical shifts in δ ppm and J values in Hz) and mass spectra on a JMS-D300 (Japan) mass spectrometer. 2-Mercaptobenzoxazole; 2-mercaptonaphth[1,2-d]oxazole; 12-mercapto-6-methylpyrano[2,3-e]benzoxazole-8(H)-one; 2-mercapto-4,8-dimethylpyrano[3,2-f]benzoxazole-6(H)-one; 3 and 2-mercapto-7,8-dimethylpyrano[2,3-e]benzoxazol-6(H)-one⁴ were prepared according to the reported methods.

2-mercapto-4,6-dimethyloxazolo[4,5-c]quinoline; 9-methylpyrano[3,2-e]benzoxazol-7(H)-one; and 8-methylpyrano[2,3-e]benzoxazole-6(H)-one were prepared from carbon disulphide and respective 3-amino-4-hydroxy-2,8-dimethylquinoline,¹² 5-amino-6-hydroxy-4-methylcoumarin¹³ and 8-amino-7-hydroxy-2-methylchromone¹⁴ following a similar procedure as reported earlier.³

Preparation of S-(aryl/heteraryloxazol-2-yl)chloroethanethioates (I-VI)a: General procedure. A mixture of 2-mercaptoaryl/heteraryloxazole (0.005 mol), chloroacetylchloride (0.005 mol) and potassium hydroxide (0.005 mol) was refluxed in methanol (20 ml) for 4 hrs. The reaction mixture was cooled and thus precipitated compound was filtered, washed with water, dried and recrystallised from suitable solvent to get the desired products (I-VI)a Table I.

Preparation of 1,2-bis[(aryl/heteraryloxazol-2-yl)thio]-1-oxoethanes (Ib, IIc, IIIe, IVf, Vg and VIj): General Procedure. To a solution of appropriate 2-mercaptoaryl/heteraryloxazole (0.011 mol) in methanol (20 ml) and pyridine (6 ml) was treated with chloroacetylchloride (0.005 mol) for 5 hrs. at 80-100°C. The reaction mixture was cooled, poured into ice-water, and neutralised with dilute HCl (10%) The separated solid was filtered, washed with water, dried and recrystallised from a proper solvent.

Preparation of S-(aryl/heteraryloxazol-2-yl)[(aryl/heteraryl-oxazol-2-yl)thio]ethanethioates (I-VI)b-j: General Procedure. The mixture of compound (I-VI)a (0.005 mol) and triethylamine (3 ml) in methanol (30 ml) was refluxed with the various 2-mercaptoaryl/heteraryloxazoles (0.005 mol) at 80-100°C for 3 hrs. The reaction mixture was cooled, poured into ice-water and neutralised with dilute HCl. The separated solid was filtered, washed with water, dried and recrystallised from an appropriate solvent to get the target compounds (I-VI)b-j (Table I).

ACKNOWLEDGMENT

The authors are thankful to Prof. K. Koteswara Rao, Principal, and Prof. K. Ranganayakulu, Head, Department of Chemistry, Regional Engineering College, Warangal (AP) for providing facilities and to

Prof. S. R. Ramadas, IIT, Madras for his invaluable suggestions. One of the authors (BRR) is grateful to the CSIR, New Delhi for financial assistance.

REFERENCES

- W. A. Sexton, Quart Review, 4, 272 (1950); E. W. Bosquet, P. L. Salzberg and H. F. Dietz, Industr. Engng. Chem., 27, 1342 (1935).
- W. H. Davies and W. A. Sexton, Biochem J., 43, 461 (1948); D. J. Brown and Y. Iwai, Austr. J. Chem., 32, 2727 (1979).
- 3. B. Rajeshwar Rao, G. V. P. Chandra Mouli and Y. D. Reddy, *Indian J. Chem.*, 22B, 176 (1983); *Ibid.*, *Phosphorus and Sulfur*, 14, 37 (1982); E. J. S. Reddy, S. M. Reddy, B. Rajeshwar Rao and Y. D. Reddy, *Pesticides*, 18(1), 44 (1984).
- B. Rajeshwar Rao, M. Sadasiva Shankar, G. V. P. Chandramouli and Y. D. Reddy, *Phosphorous and Sulfur*, 17, 81 (1983).
- L. J. Bellamy, The Infrared Spectra of Organosulfur compounds (Pergamon Press, Oxford, London) 47 (1961).
- A. Pozefsky and N. D. Coggeshall, Analyt. Chem., 23, 1611 (1951); D. W. Scott, and J. P. McCullough, J. Am. Chem. Soc., 80, 3554 (1958).
- 7. D. Bassignana, C. Cogrossi and M. Gandio, Spectrochim Acta, 19, 1885 (1963).
- C. S. Barnes and J. L. Occolowitz, Austr. J. Chem., 17, 975 (1964); D. C. DeJongh and M. L. Thomson, J. Org. Chem., 38, 1356 (1973).
- 9. J. G. Vincent and H. W. Vincent, Proc. Exptl. Biol. Med., 55, 162 (1944).
- 10. G. W. Irving, J. Bact., 52, 101 (1946).
- 11. R. D. Desai, R. F. Hunter and A. R. K. Khalidi, J. Chem. Soc., 1934 1186; Ibid, 1938 321.
- 12. K. Desai and C. M. Desai, Indian J. Chem., 5, 170 (1967).
- 13. Y. D. Reddy and V. V. Somayajulu, J. Indian Chem. Soc., 58, 599 (1981).
- 14. Y. D. Reddy and V. V. Somayajulu, Proc. Indian Acad. Sci., 74, 265 (1971).